Od roku kolónky 5 už má svoje 7, nemôžeme dať 7, na námestí 5,4. Tak tu vieme, že 2 chodí na 5,4 a 7 musí ísť na 7,4:
Teraz sme vyriešili všetky stĺpci 4, a sme použili iba jednoduché logiky, ako to urobiť. Pretože sa jedná o jednoduchý puzzle, mohli by sme pravdepodobne riešiť veľkú časť to takto. Ale to nie je vždy tak jasný. Tam sú stratégie môžeme použiť, keď riešenie nie je tak zrejmý, a to všetko začína s niektorými malými ceruzkou
riešení sudoku :. Možné Čísla
penciling v možných riešení pre prázdne pole sa stáva veľmi dôležité, pretože sudoku hádanky ťažšie. Ale vy nie hádať, keď ste ceruzky. Vy proste zoznam možných riešení. Nemali by ste odhadnúť sudoku. - To bude pravdepodobne skončí poplietol kompletné puzzle tak, že budete musieť začať znovu, pretože všetko je prepojené
Podľa penciling vo všetkých možných čísel pre každú námestí v danom riadku, stĺpci alebo pole, môžeme použiť niektoré stratégie, ako riešiť túto časť. Poďme sa pozrieť na riadku 7, ktorý má štyri prázdne polia a potrebuje 4, 5, 6, a 9.
Budeme ceruzkou vo všetkých čísel, ktoré by mohli vyriešiť každú prázdne políčko, v tomto poradí. Takže, z čísel 4, 5, 6 a 9, ktoré by mohlo vyriešiť štvorec na 7,2? 4 nemôže ísť tam, pretože stĺpec 2 už má 4. 5 je možnosť, pretože ani riadok 2 ani box 7 má 5 doteraz. Veľkosť 6 je, pretože box 7 má 6 už. 9 môže ísť tam, pretože riadok 2 a box 7 sú obaja chýba 9. Takže budeme ceruzkou v " 5 9 " na námestí:
pomocou rovnakého procesu pre námestia na 7,5, môžeme eliminovať 4 a 9 (odsek 8 už má jeden z každého) a ceruzku v 5. a 6. Pre námestí v 7,6, môžeme ceruzka v 5. a 6. A na námestí na 7,8, niektoré z čísel bude fungovať:
Pri pohľade na čísla, ktoré ste ceruzkou, ty ' LL všimnúť dve veci: Po prvé, dva štvorce majú rovnaký pár čísel (a len týchto dvoch čísel), a za druhé, 4 sa zobrazí iba raz. Poďme začať s 4, ktorý sa zobrazí iba vo námestí 7,8. Používanie, čo budeme volať " jedného výskytu " Stratégia, vieme, že v prípade, že jediné miesto, 4 môže ísť, je v 7,8, sme vyriešili ten štvorec, pretože riadok 7 potrebuje 4. Takže teraz, riadok 7 vyzerá takto:
Teraz, poďme sa pozrieť na opakujúce paru: Obaja 5 a 6, - a iba 5 a 6, - môže ísť vo štvorcoch 7,5 a 7,6. To, čo tu máme, je sada zladených párov. 5 musí ísť v jednom z týchto dvoch štvorcov a 6 musí ísť v jednom z týchto dvoch štvorcov. Používanie stratégiu zodp